If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-6k=-1
We move all terms to the left:
3k^2-6k-(-1)=0
We add all the numbers together, and all the variables
3k^2-6k+1=0
a = 3; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·3·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{6}}{2*3}=\frac{6-2\sqrt{6}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{6}}{2*3}=\frac{6+2\sqrt{6}}{6} $
| 17=-28+-9x | | -3.6f=0.4f=-0.111 | | 3q+4=4 | | 19.43-18.1k=-14.7k-4.3k+4.76 | | A(t)=2000(1.25)t | | 2(y+y)=64 | | y/8+40=44 | | 3(2n+4)=2(n+8) | | x+5/12=11/12 | | 2(m-3)+m=78 | | 10u+8+9=-3u+7(3u-9) | | -7(5+x)=63 | | {x}{3}+10=17 | | x*x=45775 | | -0.6d=7.2 | | -28q=-2/3 | | 9u-22=23 | | 10+.32n=26 | | 5=-1+x/5 | | 6x+5=215 | | 8(q-95)=8 | | m-21=44 | | 5)6.2+c);c=3.8 | | 5x+135+4x=180 | | -28=-8y+3(y-6) | | -8g-5=-5g-20 | | G(3)=4f(3)+7 | | 6q-7=89 | | −78=−6(p–4) | | 1/3(9x-3)=-34 | | 135=-9a | | 29=8-3(x-5) |